直方图又称质量分布图。是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。
作用:(1)显示质量波动的状态。
(2)较直观地传递有关过程质量状况的信息。
(3)通过研究质量波动状况之后,就能掌握过程的状况,从而确定在什么地方集中力量进行质量改进工作。
频数分布直方图的定义:
在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。
相关概念:
组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。
组距:每一组两个端点的差。
频数分布直方图的特点:
①能够显示各组频数分布的情况。
②易于显示各组之间频数的差别。
直方图绘制注意事项:
a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。
b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。
c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。
d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值 的位置(点画线表示)不能与公差中心M相混淆。图的右上角标出:N、S、C p或 CP K。
应用步骤:
(1)收集数据。作直方图的数据一般应大于50个。
(2)确定数据的极差。用数据的最大值减去最小值 求得。
(3)确定组距。先确定直方图的组数,然后以此组数去除极差,可得直方图每组的宽度,即组距。组数的确定要适当。组数太少,会引起较大计算误差。组数太多,会影响数据分组规律的明显性,且计算工作量加大。
(4)确定各组的界限值。为避免出现数据值与组界限值重合而造成频数据计算困难,组的界限值单位应取最小测量单位的1/2。分组时应把数据表中最大值和最小值包括在内。
第一组下限值为:最小值-0.5。
第一组上限值为:第一组下限值加组距。
第二组下限值就是第一组的上限值。
第二组上限值就是第二组的下限值加组距。
第三组以后,依此类推定出各组的组界。
(5)编制频数分布表。把多个组上下界限值分别填入频数分布表内,并把数据表中的各个数据列入相应的组,统计各组频数据(f )。
(6)按数据值比例画出横坐标。
(7)按频数值比例画纵坐标。以观测值数目或百分数表示。
(8)画直方图。按纵坐标画出每个长方形的高度,它代表取落在此长方形中的数据数。(注意:每个长方形的宽度都是相等的。)在直方图上应标注出公差范围(T)、样本容量(n)、样本平均值(x)、样本标准偏差值(s)和x的位置等。
以上是小编整理“2023考研心理学备考:心理学统计之直方图绘制及应用”的全部内容,希望对各位小伙伴们有所帮助,更多考研择校择专业信息尽在本栏目!